Bonds	Distanc	Distances (Å)		
$(a-b\cdots c)$	bc	ac	abc	
$O(4) - H(3) \cdots O(1^{i})$	1.66 (7)	2.67(1)	163 (7)	
$O(1) - H(1) \cdots O(2)$	1.85 (7)	2.90 (1)	146 (7)	
$O(1)-H(2)\cdots O(3^{11})$	2.04 (8)	2.75 (1)	159 (8)	
$N(1)-H(8)\cdots O(3^{111})$	1.97 (8)	2.84(1)	174 (7)	
$N(1)-H(9)\cdots O(2^{iv})$	2.07 (8)	2.84(1)	134 (6)	
$N(2)-H(6)\cdots O(4^{v})$	2.25 (9)	3.02 (1)	149 (9)	
$N(2)-H(7)\cdots O(2)$	1.92 (9)	2.81(1)	168 (6)	
$N(3)-H(4)\cdots O(1^{vi})$	2.20 (9)	2.91 (1)	172 (11)	
Equivalent positions				
(i) $1+x$ y z	(ii)	1-x	$-\frac{1}{2}+y$ $\frac{1}{2}-z$	
(iii) $-x \ 1-y \ 1-z$	(iv)	-1 + x	$\frac{1}{2} - y = \frac{1}{2} + z$	
(v) $x \frac{1}{2} - y \frac{1}{2} + z$	(vi)	1-x	1-y -z	

Table 6. Hydrogen-bonding geometry

The peroxide O(4) forms a hydrogen bond (2.69 Å) to the water O(1), which also accepts a hydrogen bond (2.92 Å) from one of the guanidinium groups. The water molecule donates two hydrogen bonds (2.75 and 2.91 Å) to different oxalate anions. The guanidinium ion also provides a hydrogen bond (3.01 Å) to the peroxide O and three other hydrogen bonds (2.81, 2.83 and 2.85 Å) to oxalate ions. This hydrogenbonding scheme uses eight of the nine possible H atoms.

We thank Professor J. M. Thomas for his advice and encouragement, and the Science Research Council for the award of a Research Studentship to one of us (R.G.P.).

References

ADAMS, J. M. & SMALL, R. W. H. (1974). Acta Cryst. B30, 2191-2193.

ADAMS, J. M. & SMALL, R. W. H. (1976). Acta Cryst. B32, 832-835.

Fig. 3. View of the structure projected down the a axis. The hydrogen-bonding scheme is shown.

- BUSING, W. R. & LEVY, H. A. (1965). J. Chem. Phys. 42, 3054-3059.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.
- HODGSON, D. J. & IBERS, J. A. (1969). Acta Cryst. B25, 469-477.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- Lu, C. S., Hughes, E. W. & GIGUÈRE, P. A. (1941). J. Amer. Chem. Soc. 63, 1507–1513.
- PEDERSEN, B. F. (1969). Structural Aspects of Perhydrates. Oslo: Universitetsforlaget.
- PEDERSEN, B. F. (1972). Acta Cryst. B28, 1014-1016.
- X-RAY system (1972). Version of June 1972, update of April 1974. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1976). B32, 2440

Structure Cristalline du Polyphosphate de Lithium-Ammonium, Li₂NH₄(PO₃)₃

PAR M. T. AVERBUCH-POUCHOT, A. DURIF ET J. C. GUITEL

Laboratoire des Rayons X, CNRS, B.P. 166, Centre de Tri 38042, Grenoble Cédex, France

(Reçu le 12 mars 1976, accepté le 19 mars 1976)

Lithium ammonium polyphosphate, Li₂NH₄(PO₃)₃, is orthorhombic, *Pbca*, with a unit cell a = 12.199(5), b = 13.047(5), c = 10.537(5) Å and Z = 8. The crystal structure of this salt has been solved by using 2297 independent reflexions. The final *R* value is 0.043. PO₃ chains, with a period of six tetrahedra, run along the **b** direction. Associated cations, all in fourfold coordination, also form chains running along the **b** direction.

Introduction

Les cristaux du polyphosphate de lithium-ammonium, $Li_2NH_4(PO_3)_3$, se présentent sous la forme de plaquet-

tes épaisses à contours irréguliers. On les prépare facilement en calcinant à 350°C, durant une quinzaine d'heures, un mélange de 3 g de carbonate de lithium et de 20 g de phosphate biammonique. Les cristaux obtenus sont insolubles dans l'eau, ce qui suggère qu'il doit s'agir d'un polyphosphate à longues chaînes.

Tableau 1. Dépouillement d'un diagramme de poudre de Li₂NH₄(PO₃)₃

Le diagramme a été effectué à vitesse lente $\begin{bmatrix} 1\\8 \end{bmatrix}^{\circ}(\theta) \min^{-1}$ à l'aide d'un diffractomètre Philips Norelco à la longueur d'onde du cuivre $K\alpha_1\alpha_2$. Les intensités données sont les hauteurs des pics au-dessus du fond continu.

hkl	d_{cal}	d_{obs}	$I_{\rm obs}$	hkl	d_{cai}	d_{obs}	$I_{\rm obs}$
111	6.80	_	_	223	2,758	_	
020	6,52	6,53	6	142	2,704	_	_
200	6.10	6.09	79	421	2.672	2.637	1
021	5.55		_	133	2.666	_,	-
210	5.53	_	_	402	2.639	2.637	6
002	5.27	5.26	100	004	2.634	_,	_
121	5.05	5.05	2	313	2.605	_	_
211	4.89	_	_	332	2.587	_	
102	4.84	-	_	412	2.587		_
112	4.53	4.53	16	104	2.575	_	_
220	4.45	4.45	1	114	2,526	2.527	4
221	4.10	_	_	242	2,525		
022	4.10	_	_	430	2,497	2,498	2
202	3,987	3.986	48	233	2,494		_
122	3,885	3,883	1	151	2.480	-	_
131	3.818		_	341	2,473	2.475	< 1
212	3,813	-	_	323	2,462	2,462	1
311	3,643	3.640	<1	422	2,447	2,447	3
230	3.541	3.541	1	024	2.443	_,	_
222	3,402	3.399	3	431	2.430	2.430	4
231	3.357	3.356	27	204	2.418	_,	_
321	3.279	3.278	3	250	2.399	-	_
113	3.268		_	124	2.395	-	_
040	3,262		_	043	2.390	-	-
132	3.234	_	-	214	2.378	_	_
302	3,219	3,220	1	143	2,345	2,344	3
312	3,125	3,125	2	251	2.339	_	_
041	3,116		_	511	2,338		-
023	3,093	3,094	<1	152	2,296	2,297	2
400	3,050	3,048	12	342	2,291	·	-
141	3,019	3,020	1	224	2,268	-	-
123	2,998	3,000	4	333	2,268	2,268	< 1
410	2,970	_	-	413	2,268	-	
213	2,964	2,962	1	432	2,256	2,257	1
232	2,939	2,940	1	521	2,233	2,334	1
322	2,887	2,887	2	440	2,228	-	
240	2,876	-	_	243	2,225		
331	2,859	2,858	<1	134	2,216	-	-
411	2,858			502	2,214	2,213	< 1
241	2,775	2,773	2	304	2,211		
042	2,773			252	2,183	2,183	5
420	2,763	2,763	4	512	2,183		

Fig. 1. Représentation schématique d'une chaîne de cations dans $Li_2NH_4(PO_3)_3$.

A notre connaissance, aucun composé défini n'avait encore été caractérisé dans le système LiPO₃-NH₄PO₃.

Données cristallographiques

L'étude d'un monocristal de Li₂NH₄(PO₃)₃ par la méthode de Weissenberg montre que ce sel est orthorhombique et possède une maille a=12,199 (5), b=13,047 (5), c=10,537 (5) Å renfermant huit unités formulaires. Le groupe spatial est *Pbca*. Le Tableau 1 donne le dépouillement d'un diagramme de poudre de ce composé.

Détermination de la structure

Techniques expérimentales

Le cristal utilisé était un fragment quasi cubique de dimensions $0,16 \times 0,16 \times 0,19$ mm. 3687 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre Philips PW 1100 opérant à la longueur d'onde du molybdène et muni d'un monochromateur graphite. La mesure de chaque réflexion était effectuée en balayage ω seul, à la vitesse de $0,04^{\circ}$ s⁻¹ dans un intervalle angulaire de $1,20^{\circ}$. Le domaine exploré s'étendait de 3 à 35° (θ). Trois réflexions de référence (0,12,1,028et 028) étaient mesurée toutes les deux heures. Aucune variation significative n'a été observée durant les mesures.

Résolution de la structure

L'étude de la fonction de Patterson tridimensionelle permet de localiser les trois sites de phosphore de l'arrangement. Une synthèse de Fourier effectuée à partir de ces positions fait apparaître alors la presque totalité des atomes d'oxygène de la charpente. Une synthèse de Fourier différence permet ensuite de découvrir les atomes de lithium et d'ammonium. Au

Tableau 2. Paramètres atomiques ($\times 10^4$) et coefficients de température isotropes B_{eq} pour Li₂NH₄(PO₃)₃

O(Lij) = oxygène de liaison P-O-P entre deux atomes de phosphore P(i) et P(j). O(Eij) = oxygène extérieur à la chaîne et lié à l'atome de phosphore P(i).

	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	B_{eq}
P(1)	9116,5 (5)	1945,5 (5)	1875,9 (6)	0,65
P(2)	481,7 (5)	148,1 (5)	2451,8 (7)	0,77
P(3)	927,5 (5)	3409,4 (5)	2028,7 (6)	0,64
O(E11)	3266 (2)	1845 (2)	4120 (2)	1,29
O(E12)	3780 (2)	1981 (2)	1778 (2)	1,14
O(L12)	5009 (2)	1072 (1)	3362 (2)	1,18
O(L13)	4798 (2)	2948 (1)	3487 (2)	1,00
O(E21)	3899 (2)	4493 (1)	1563 (2)	1,63
O(E22)	1054 (2)	546 (2)	3586 (2)	1,70
O(L23)	621 (1)	4597 (1)	2096 (2)	1,25
O(E31)	1190 (2)	3027 (2)	3311 (2)	1,26
O(E32)	1749 (2)	3292 (1)	1007 (2)	1,22
NH₄	2576 (2)	4279 (2)	5055 (2)	1,71
Li(1)	1649 (4)	1800 (4)	4157 (5)	1,26
Li(2)	3346 (4)	3241 (4)	945 (5)	1,14

	β(11)	β(22)	β(33)	β(1 2)	β(13)	β(23)
P(1)	101 (3)	98 (3)	149 (4)	0 (3)	-3(3)	-3(3)
P(2)	114 (3)	75 (2)	248 (5)	6 (3)	6 (4)	-2(3)
P(3)	102 (3)	88 (3)	161 (4)	16 (2)	0 (3)	-2(3)
O(E11)	153 (11)	2 81 (11)	233 (15)	-46 (9)	54 (10)	17 (11)
O(E12)	234 (11)	174 (10)	184 (14)	22 (9)	- 53 (11)	11 (10)
O(L12)	246 (12)	124 (9)	276 (16)	67 (8)	- 84 (11)	-32(10)
O(E21)	267 (13)	135 (9)	528 (21)	-63(9)	- 175 (13)	- 24 (12)
O(E22)	297 (14)	199 (10)	441 (19)	- 33 (10)	-153 (14)	-3(12)
O(L23)	143 (10)	92 (8)	402 (17)	10 (7)	60 (11)	2 (10)
O(E31)	267 (12)	183 (10)	208 (15)	11 (9)	-61(11)	33 (10)
O(E32)	139 (11)	257 (11)	241 (16)	32 (9)	38 (10)	-1(11)
O(<i>L</i> 13)	166 (10)	117 (8)	268 (14)	- 20 (8)	53 (10)	-32(10)
NH₄	313 (16)	208 (13)	408 (21)	13 (12)	33 (17)	-7 (13)
Li(1)	262 (31)	164 (25)	244 (39)	-16 (21)	-34 (27)	22 (25)
Li(2)	188 (28)	161 (24)	266 (40)	-1 (20)	-30 (26)	-3 (25)

Tableau 3. Facteurs anisotropes de température pour $Li_2NH_4(PO_3)_3$ (×10⁵)

niveau des affinements, 2304 données correspondant à $|F_a| > 10$ à l'échelle absolue ont été conservées,

Quelques cycles d'affinements avec des facteurs isotropes de température conduisent rapidement à un facteur R de 0,061. L'introduction des facteurs thermiques anisotropes conduit à R=0,043. Tous les atomes occupent la position générale du groupe *Pbca*. Le Tableau 2 donne les coordonnées cristallographiques

de cet arrangement et le Tableau 3 les facteurs thermiques anisotropes.*

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31752: 17 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH11NZ, Angleterre.

Tableau 4. Distances interatomiques (Å) et angles des liaisons (°) dans l'arrangement atomique de Li₂NH₄(PO₃)₃

Pour chaque	tétraèdre	PO₄ de	la cha	aîne, les	distanc	ces P-4	O sont
soulignées, le	es angles	O-P-O	sont	indiqué	s dans	les tri	angles
supérieurs à	droite.						_

P(1)	O(L13)	O(E11)	O(E12)	O(L12)
O(L13)	1,601 (2)	105,5 (1)	110,4 (1)	101,1 (1)
O(E11)	2,458 (3)	1,485 (2)	119,2 (1)	107,6 (1)
O(E12)	2,532 (3)	2,560 (3)	1,482 (2)	111,3 (1)
O(L12)	2,473 (3)	2,492 (3)	2,546 (3)	1,601 (2)
P(2)	O(L12)	O(E21)	O(<i>E</i> 22)	O(L23)
O(L12)	1,593 (2)	106,5 (1)	109,9 (1)	101,4 (1)
O(E21)	2,463 (3)	1,481 (2)	118,3 (1)	111,1 (1)
O(E22)	2,519 (3)	2,545 (3)	1,483 (2)	108,4 (1)
O(<i>L</i> 23)	2,472 (3)	2,542 (3)	2,502 (3)	1,602 (2)
P(3)	O(L23)	O(E31)	O(E32)	O(L13)
O(L23)	1,602 (2)	109,8 (1)	107 , 0 (ĺ)	100,3 (1)
O(E31)	2,522 (3)	1,480 (2)	119,0 (1)	111,7 (1)
O(E32)	2,480 (3)	2,553 (3)	1,483 (2)	107,3 (1)
O(L13)	2,462 (3)	2,554 (3)	2,488 (3)	1,604 (2)
P(1)-P(2)	2,9494 (9)	P(1)-0	D(L13) - P(3)	132,6 (1)
P(2) - P(3)	2,9080 (9)	P(1)-0	D(L12) - P(2)	134,9 (1)
P(3) - P(1)	2,9340 (9)	P(2)-0	D(L23) - P(3)	130,4 (1)

Fig. 2. Projection de l'arrangement de Li₂NH₄(PO₃)₃ sur le plan *ab*. Seules les chaînes phosphatées situées en $z \sim \frac{1}{4}$ sont représentées.

Tableau 4 (suite)

Li(1)-O(E31)	1,922 (5)	$NH_4-O(E21)$	2,897(3)	Li(2)-O(E21)	1,890 (5)
Li(1) - O(E32)	1,964 (5)	$NH_4-O(E31)$	2,992 (3)	Li(2)-O(E32)	1,955 (5)
Li(1) - O(E11)	1,980 (6)	$NH_4-O(E12)$	2,863 (3)	Li(2) - O(E11)	1,935 (5)
Li(1)-O(E22)	1,894 (5)	NH ₄ -O(<i>E</i> 22)	2,825 (3)	Li(2) - O(E12)	1,943 (5)

Tableau 5. Axes principaux des ellipsoïdes de vibration thermique

 U^2 =carrés moyens des amplitudes de vibration thermique (Å²), le long des axes principaux des ellipsoïdes. $\theta_a, \theta_b, \theta_c$: angles de ces axes avec les axes cristallographiques a, b et c.

•

	U (A)			
	$(\times 10^{3})$	θ°/a	θ°/b	θ°/c
P(1)	93	83	43	132
- (-)	91	103	48	45
	87	15	87	76
P(2)	119	86	91	4
- (-)	93	13	77	94
	80	103	13	88
P(3)	96	101	105	10
- (0)	95	46	50	71
	80	134	44	87
O(E11)	159	105	15	89
0(211)	126	56	82	35
	189	38	77	125
O(E12)	140	26	72	108
-()	122	102	22	72
	93	67	102	26
O(L12)	158	40	68	122
. (,	109	65	70	33
	89	119	30	96
O(E21)	194	124	87	34
. ,	132	54	132	63
	83	55	42	70
O(E22)	184	132	84	42
	135	105	26	111
	112	46	65	55
O(L23)	155	73	89	17
	100	27	69	106
	88	110	21	85
O(E31)	148	22	90	112
	130	82	20	71
	96	70	110	29
O(E32)	151	78	13	87
	122	65	98	27
	94	29	100	117
O(L13)	136	57	108	39
	101	36	93	126
N177	96	77	19	77
NH ₄	160	40	86	50
	14/	12/	107	42
T ((1)	133	103	1/	80
LI(1)	145	25	104	109
	121	0/	30	02 26
I (2)	120	120	02	20
	147	127	92	37
	110	90 40	9 97	93 51
	114	40	04	51

Description de la structure

L'arrangement est essentiellement constitué par des chaînes $(PO_3)_{\infty}$ de période six tétraèdres parallèles à

Fig. 3. Projection de l'arrangement de Li₂NH₄(PO₃)₃ sur le plan *ab*. Seules les chaînes de cations situées en $z \sim \frac{1}{2}$ sont représentées.

la direction **b** et situées approximativement en z=0.25et 0,75, et x=0,0 et 0,5. La cohésion entre ces chaînes est assurée par des chaînes de cations également parallèles à **b** mais stiuées en z=0 et 0,5, et x=0,25 et 0,75. Tous les cations possèdent une coordination tétraédrique formée uniquement par des atomes d'oxygène extérieurs des chaînes, O(Eij). Dans l'alternance NH4-Li-Li-NH4... les deux tétraèdres LiO4 mettent en commun une arête. La Fig. 1 donne une représentation schématique de la chaîne des cations, tandis que la Fig. 2 donne une projection de l'arrangement sur le plan ab. Dans cette dernière figure seules sont représentées les chaînes phosphatées situées en $z \sim \frac{1}{4}$. La Fig. 3 donne, toujours en projection sur le plan ab, la représentation des chaînes de cations situées en $z \sim \frac{1}{2}$. Le Tableau 4 donne les principales distances interatomiques et angles de liaison dans cet arrangement. Le Tableau 5 fournit les longueurs et les directions des axes des ellipsoïdes de vibration thermique.